Difference between revisions of "Talk:Baseband RSA Keys"

From The iPhone Wiki
Jump to: navigation, search
(New page: User:Paul0 suggested this factorization for rsa_key3: (not prime) f2 = 24 95 0d 4a 72 24 f5 6a 15 5f 6f 58 e3 3b f9 92 c5 fb 21 5c bb 9d a3 8a 63 62 1c 91 90 89 f0 4a 10 2e c8 ...)
 
 
(3 intermediate revisions by the same user not shown)
Line 18: Line 18:
   
 
However,
 
However,
  +
rsa_key3 = 112548145501143413877572720967635429059624128941235286814653432534119379263401954209730336088182279431822189480697279769933562374916693852799260561441848037943828221394563114427090483520789586156157496772821757538234969441211075232799607401426252155694386013902169784000266031008270047603255802707293989133031
rsa_key3 = 3723831821883702670678201674717918174629677902801569278439133496127413091410975376899192815194880111741267989023834018905027460993096578420421399938130915013991830265235766488560948787045449571744218241649175170290402111788993338128284057787949145302879517838138041196804337537028831470042894492396009634808062527953671468669060509014833090941515
 
  +
f1 = 17876955317115447381157919886144538387308441247085257635572171826794253277256372460463477770098763696910986285378300627539600204950194621383554975965324631149532355710525801309465604474665765254953825047369078348205584002973869012758851553079758612258254980441408089061867729556772
 
  +
f2 = 17876955317115447381157919886144538387308441247085257635572171826794253277256372460463477770098763696910986285378300627539600204950194621383554975965324631149532355710525801309465604474665765254953825047369078348205584002973869012758851553079758612258254980441408089061867729556772
f2 = 19574178722326421301599573536448352386098089397337991030176983150880
 
  +
  +
f1 = 19574178722326421301599573536448352386098089397337991030176983150880
  +
 
f1*f2 = 349926718388261371569022220378917782692194588648747109479039236183507739374218762137974554503090374018744169165998671825504162527118702221137070525632386140758758095389408367984136132994861553048641125678600013365524850972617693473037042850155943617530837212223950368442328698913412086039290071192126386225277883345300427209227825789909214401759360
 
f1*f2 = 349926718388261371569022220378917782692194588648747109479039236183507739374218762137974554503090374018744169165998671825504162527118702221137070525632386140758758095389408367984136132994861553048641125678600013365524850972617693473037042850155943617530837212223950368442328698913412086039290071192126386225277883345300427209227825789909214401759360
   
-> f1*f2 != rsa_key3 - the factorization is invalid.
+
-> f1*f2 != rsa_key3 - the factorization is invalid. Moreover, f1 and f2 are even numbers and not prime. I suspect some confusion with the endianness of the hex key.
  +
 
--[[User:Dogbert|Dogbert]] 17:12, 18 March 2011 (UTC)
 
--[[User:Dogbert|Dogbert]] 17:12, 18 March 2011 (UTC)

Latest revision as of 17:45, 18 March 2011

User:Paul0 suggested this factorization for rsa_key3:

(not prime) f2 =

24 95 0d 4a 72 24 f5 6a 15 5f 6f 58 e3 3b f9 92 
c5 fb 21 5c bb 9d a3 8a 63 62 1c 91 90 89 f0 4a 
10 2e c8 86 17 78 13 0f a7 fd 73 31 aa f0 8c a3 
63 88 e9 4d 51 d6 db cf 80 4e 6d df 12 f9 20 ab 
f9 d3 4a 17 b1 77 76 6c 9a fa 4a 62 5a dc b1 5e 
98 d3 3f 6e fa 24 ce ae ba 08 8c d8 c3 8c 1a ad 
e2 c2 bc cd c3 04 05 59 92 00 7d 8e 06 20 e5 de 
2f 11 f6 e0 7

(not prime) f1 =

20 f1 89 de ed 41 e6 df eb ea 2c 19 38 47 3b 29 
25 bb 00 af 02 32 bd f5 52 31 de b9
  • Key3 = f1*f2. Please verify, thanks. yafu might be buggy

However, rsa_key3 = 112548145501143413877572720967635429059624128941235286814653432534119379263401954209730336088182279431822189480697279769933562374916693852799260561441848037943828221394563114427090483520789586156157496772821757538234969441211075232799607401426252155694386013902169784000266031008270047603255802707293989133031

f2 = 17876955317115447381157919886144538387308441247085257635572171826794253277256372460463477770098763696910986285378300627539600204950194621383554975965324631149532355710525801309465604474665765254953825047369078348205584002973869012758851553079758612258254980441408089061867729556772

f1 = 19574178722326421301599573536448352386098089397337991030176983150880

f1*f2 = 349926718388261371569022220378917782692194588648747109479039236183507739374218762137974554503090374018744169165998671825504162527118702221137070525632386140758758095389408367984136132994861553048641125678600013365524850972617693473037042850155943617530837212223950368442328698913412086039290071192126386225277883345300427209227825789909214401759360

-> f1*f2 != rsa_key3 - the factorization is invalid. Moreover, f1 and f2 are even numbers and not prime. I suspect some confusion with the endianness of the hex key.

--Dogbert 17:12, 18 March 2011 (UTC)